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Abstract

Human language is organized along two main processing streams connecting posterior temporal cortex 

and inferior frontal cortex in the left hemisphere, travelling dorsal and ventral to the Sylvian fissure. 

Some views propose a dorsal motor versus ventral semantic division. Others propose division by 

combinatorial mechanism, with the dorsal stream responsible for combining elements into a sequence 

and the ventral stream for forming semantic dependencies independent of sequential order. We 

acquired data from direct cortical stimulation in the left hemisphere in 17 neurosurgical patients and 

subcortical resection in a subset of 10 patients as part of awake language mapping. Two language tasks 

were employed: a sentence generation (SG) task tested the ability to form sequential and semantic 

dependencies, and a picture-word interference (PWI) task manipulated semantic interference. Results 

show increased error rates in the SG versus PWI task during subcortical testing in the dorsal stream 

territory, and high error rates in both tasks in the ventral stream territory. Connectivity maps derived 

from diffusion imaging and seeded in the tumor sites show that patients with more errors in the SG than 

in the PWI task had tumor locations associated with a dorsal stream connectivity pattern. Patients with 

the opposite pattern of results had tumor locations associated with a more ventral stream connectivity 

pattern. These findings provide initial evidence using fiber tract disruption with electrical stimulation 

that the dorsal pathways are critical for organizing words in a sequence necessary for sentence 

generation, and the ventral pathways are critical for processing semantic dependencies.
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1. Introduction

The neural basis for language is thought to be organized along two main processing streams connecting 

the posterior temporal cortex to the inferior frontal cortex in the left hemisphere: one travelling dorsally 

and the other ventrally, relative to the Sylvian fissure (Bornkessel-Schlesewsky et al., 2015; Fridriksson et 

al., 2018, 2016; Hickok & Poeppel, 2007; Rauschecker & Scott, 2009; Saur et al., 2008; Ueno, Saito, 

Rogers, & Lambon Ralph, 2011). Most studies addressing this dorsal/ventral division have investigated 

speech perception processes, rarely taking speech production into account (although see, Fridriksson et 

al., 2018, 2016; Hickok, 2012; Roelofs, 2014; Ueno et al., 2011). Furthermore, the causal roles of the 

ventral and dorsal language pathways have seldom been tested through direct brain stimulation (Duffau 

et al., 2002; Duffau, Moritz-Gasser, & Mandonnet, 2014). We report initial steps to address the causal 

roles of ventral and dorsal pathways in language production through direct cortical electrical stimulation 

(DCES) and subcortical stimulation and resection as part of awake language mapping during surgery for 

brain tumor.

Carl Wernicke and Ludwig Lichtheim in the 19th century proposed two pathways linking “auditory word 

images” stored in Wernicke’s area to “motor word images” stored in Broca’s area. In this dual-pathway 

model based on lesion studies, “auditory word images” were converted into “motor word images” 

through a phonological pathway (later defined as the arcuate fasciculus) or indirectly through a 

semantic pathway involving a distributed conceptual center or network (Lichtheim, 1885). This 

dissociation was based mainly on the pattern of errors observed in conduction aphasia, wherein 

relatively fluent, although paraphasic, spontaneous speech and preserved auditory comprehension can 

be dissociated from impaired speech repetition (Tippett & Hillis, 2016). These early neurolinguistic 

models lacked anatomical specification (Chang, Raygor, & Berger, 2015). Contemporary models include 

results from neuroimaging studies and are inspired from the dorsal (where) / ventral (what) division of 

the visual (Ungerleider & Mishkin, 1982) and auditory (Rauschecker & Tian, 2000) systems in the brain. 

Hickok and Poeppel (2007) proposed a neurobiological model following a motor (dorsal) versus 

conceptual/semantic (ventral) division. The dorsal pathway includes the arcuate and superior 

longitudinal fasciculi, and the posterior superior temporal lobe (including area Spt at the temporo-

parietal junction in the Sylvian fissure) terminating in the inferior frontal gyrus (IFG) and premotor 

cortex, as shown by a neuroimaging study combining functional magnetic resonance imaging with 

diffusion imaging  results (Saur et al., 2008). The ventral pathway involves the middle and inferior 

longitudinal fasciculi but also the uncinate fasciculus (Fridriksson et al., 2016) and inferior fronto-
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occipital fasciculus (Martino, Brogna, Robles, Vergani, & Duffau, 2010), as well as the superior temporal 

gyrus ending near anterior portions of the inferior frontal gyrus (Broca’s area: pars orbitalis and 

triangularis) (Saur et al., 2008). The dorsal pathway is linked to sensori-motor mapping of sound to 

articulation (Saur et al., 2008), and auditory feedback control in speech production (Hickok, 2012), 

making it important for supporting repetition (Ueno et al., 2011). By contrast, the ventral stream has 

been associated with the ability to map auditory input onto conceptual and semantic representations, 

as well as syntactic processing (Hickok & Poeppel, 2004, 2007; Ueno et al., 2011). We note that some 

researchers argue that a secondary dorsal stream pathway supports the mapping of lexical-semantic 

representations onto speech output processes (Glasser & Rilling, 2008; Roelofs, 2014).

Other neuroimaging studies have proposed that the dorsal stream also plays a role in syntactic 

processing (Friederici, Bahlmann, Heim, Schubotz, & Anwander, 2006; Friederici, Makuuchi, & 

Bahlmann, 2009; Bornkessel-Schlesewsky et al., 2015; Friederici, 2012), although some models suggest a 

dissociation between complex and simple syntactic processing with the dorsal stream being primarily 

involved in complex syntax (Friederici et al., 2006, 2012). Interestingly, damage to the dorsal but not 

ventral pathway correlates with deficits in syntactic processing in primary progressive aphasia (Wilson et 

al., 2011). Inspired by auditory processing research in non-human primates (Rauschecker & Tian, 2000), 

Bornkessel-Schlesewsky et al. (2015) proposed a dorsal/ventral division of auditory language processing 

(see also, Rauschecker & Scott, 2009). According to this proposal, the dorsal stream contributes to 

combining elements into a sequence (i.e., phonemes but also sentences), and the ventral stream 

contributes to the formation of dependencies independent of sequential order (i.e., semantics). 

Although dual stream models have been mainly focused on language perception, recent dual-stream 

models of language production have been proposed (Fridriksson et al., 2016; Hickok, 2012; Roelofs, 

2014; Ueno et al., 2011). These models generally propose that speech repetition and auditory feedback 

control are enabled through the dorsal stream (Hickok, 2012; Ueno et al., 2011). In addition, these 

models generally argue that conceptual-to-lexical mapping in language production is implemented along 

the ventral stream similarly as lexical-to-conceptual mapping in speech perception (Fridriksson et al., 

2016; Hickok, 2012; Roelofs, 2014; Ueno et al., 2011), even if (Roelofs, 2014) proposes the connection to 

speech output is subserved by a secondary dorsal stream. . However, whether sequential word 

production in a sentence would involve the dorsal stream, the ventral stream, or both is unclear. 

Existing dual-stream models offer diverging views with respect to the neural substrate needed for 

syntactic comprehension, with some arguing for a role of the dorsal stream (Bornkessel-Schlesewsky et 
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al., 2015), and others arguing that the ventral stream is primarily responsible (Fridriksson et al., 2016; 

Hickok & Poeppel, 2004; Saur et al., 2008). 

This study tests for a dorsal/ventral division in language production and for a causal role of the dorsal 

pathway in word sequence formation by testing language production abilities during DCES (Penfield & 

Roberts, 1959) and subcortical resection and stimulation in patients undergoing surgery for brain tumor 

removal. This technique is typically used to preserve eloquent cortex (i.e., cortical regions supporting 

language, motor, and sensory functions) in patients undergoing resective surgery for brain tumor 

removal or removal of the epileptogenic zone in refractory epilepsy (see Methods).

Awake language mapping has recently included language testing during subcortical stimulation, in 

addition to standard cortical stimulation (Hugues Duffau et al., 2002; Hugues Duffau, Gatignol, Denvil, 

Lopes, & Capelle, 2003; Hugues Duffau et al., 2005; Mandonnet, Nouet, Gatignol, Capelle, & Duffau, 

2007). This approach is used to preserve critical white matter pathways during resection (see also 

Caverzasi et al., 2016), and have led to the proposal of a hodotopical1 map combining cortical regions 

and white matter pathways supporting language (Duffau, 2015; Duffau, Moritz-Gasser, & Mandonnet, 

2014, see also Catani & Mesulam, 2008; Turken & Dronkers, 2011). 

We use two tasks: 1) picture-word interference (PWI), manipulating meaning dependencies (Glaser & 

Düngelhoff, 1984; Lupker, 1979) and 2) simple sentence generation, requiring ordering words in a 

sequence. 

In the PWI task, used extensively in the field of psycholinguistics, pictures are presented with 

superimposed distractor words (e.g., Bürki, 2017; Costa, Alario, & Caramazza, 2005; Piai, Roelofs, 

Acheson, & Takashima, 2013; Piai, Roelofs, Jensen, Schoffelen, & Bonnefond, 2014; Piai, Roelofs, & 

Schriefers, 2015; Roelofs & Piai, 2015, 2017). In the semantic version of the task (used here), the 

distractor words can be semantically related to the picture (e.g., picture of a dog, distractor word: “cat”) 

or unrelated (e.g., picture of a dog, distractor word: “chair”). Naming the picture takes longer and error 

rates are higher in the semantically-related, compared to the unrelated condition. This is interpreted as 

increased competition for word selection caused by over-activation of semantically-related alternatives 

in the semantically-related compared to the unrelated condition. The experimental manipulation 

employs meaning dependencies, and therefore should involve ventral white matter pathways. In 

1 A hodotopical map combines the pathway (from the Greek hodos = road or path) and the area (from the Greek 
topos = place) involved in a given function (Duffau, Moritz-Gasser, & Mandonnet, 2014). 
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support of this hypothesis, this task has been shown to elicit differential hemodynamic responses in 

several brain regions, including left temporal regions (anterior and posterior superior temporal gyrus, 

middle temporal gyrus), and frontal regions (orbitomedial prefrontal cortex) (Piai et al., 2013; Zubicaray, 

Wilson, McMahon, & Muthiah, 2001). We note the medial frontal cortex, and in particular the anterior 

cingulate cortex has been associated with control processes engaged in this paradigm (Piai et al., 2013). 

In addition, lesions in the left temporal lobe have been shown to be associated with larger semantic 

interference effects (Piai & Knight, 2017). 

In the second task, patients were asked to produce simple sentences, containing a subject, verb, and 

object when needed (e.g., “the woman is writing a letter”), in response to action pictures. This task 

involves both access to meaning and ordering elements in a sequence. Accordingly, we hypothesized 

that overt sentence generation would engage both the ventral and dorsal streams. In support of the 

engagement of the dorsal stream in this task, overt sentence generation has been shown to elicit 

stronger fMRI responses than sentence reading in the left posterior IFG (BA 44/45), medial frontal cortex 

(BA 6), and superior parietal lobule (BA7) (Haller, Radue, Erb, Grodd, & Kircher, 2005; see also Indefrey 

et al., 2001, for a positron emission tomography study supporting the role of left BA 44 and BA 6 in 

syntactic encoding during production). In addition and as noted above, damage to the superior 

longitudinal fasciculus as measured through diffusion tensor imaging has been associated with deficits in 

production and comprehension of syntax in patients with primary progressive aphasia (Wilson et al., 

2011). However, cortical regions along the ventral stream such as the left middle temporal gyrus (BA 21) 

(Segaert, Menenti, Weber, Petersson, & Hagoort, 2012) and the left temporal pole (Pylkkänen, Bemis, & 

Blanco Elorrieta, 2014) were also associated with sentence or phrase production, suggesting the ventral 

stream may also play a role in sentence generation. We hypothesized that the sentence generation task 

would be dependent on both the dorsal and ventral streams, but that the PWI task would involve the 

ventral stream more strongly than the dorsal stream. 
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2. Materials and Methods

2.1.  Participants

Seventeen patients undergoing resective surgery for tumor removal in the left hemisphere participated 

(11 males; mean [sd] age at testing: 40 [14] years, and education: 16 [2] years)2. All patients were fluent 

in English to the level of native proficiency (one patient was not a native English speaker but was 

proficient in English). Of the 17 patients, 16 were stimulated cortically and 10 were tested during 

subcortical resection in one or both tasks. Etiologies, tumor grade, and resected tumor general locations 

are indicated in Table 1. Overlays of tumor sites are also presented in Figure 1. Of the 10 patients tested 

during subcortical resection, 5 had tumors above the Sylvian fissure and were classified as “dorsal”, and 

5 had tumors below the Sylvian fissure and were classified as “ventral” (see Figure 2 for tumor site 

overlays for the dorsal and ventral groups). The study was approved by the UCSF and UC Berkeley 

Institutional Review Boards, and all participants gave written informed consent. Analysis of de-identified 

data took place at San Diego State University, UC Berkeley, and UCSF.

Table 1: Etiology, tumor grade, and resected tumor location for the 17 patients included in the study.

Patient # Pathology Grade Resected tumor location

1 Oligodendroglioma 2 left inferior parietal lobe

2 Meningioangiomatosis NA left middle frontal lobe

4 Oligoastrocytoma 2 left inferior frontal lobe

5 Anaplastic astrocytoma 3 left inferior frontal lobe and anterior insula

6 Glioblastoma 4 left inferior and middle temporal gyri

7 Oligodendroglioma 2 left inferior frontal and anterior temporal lobes

8 Oligodendroglioma 2 left inferior frontal lobe

9 Anaplastic astrocytoma 3 left temporal lobe

10 Oligodendroglioma 2 left insula, medial temporal lobe, and basal 

forebrain

11 Diffuse astrocytoma 2 left insular centered, anterior temporal lobe and 

posterior IFG involved. 

12 Diffuse astrocytoma 2 left posterior hippocampus

13 Ganglioglioma 1 left mid-hippocampus 

2 We also tested 2 patients with right hemisphere lesions (Pt 3 and 14) who were not included in the analyses. See 
supplementary materials (Figure S1).
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15 Oligodendroglioma 2 left inferior posterior frontal lobe

16 Glioblastoma 4 left mid- and superior temporal lobe

17 Oligodendroglioma 2 left inferior frontal lobe

18 Oligoastrocytoma 2 left insula, anterior temporal, inferior frontal lobes

19 Astrocytoma 2 left inferior and middle temporal gyri, 

parahippocampal gyrus

2.2.  Surgical procedures

All patients underwent craniotomy using monitored anesthesia care: local anesthetic infiltration was 

applied to the scalp. Patients were sedated with either Propofol or dexmedetomidine at the start of the 

procedure. Surgical exposure was tailored to the target lesion. Intraoperative language mapping with 

DCES was performed in all but one patient, who had a seizure during motor mapping and did not 

participate in further testing. Patients were fully awake for the DCES mapping; intraoperative 

electrocorticography was used to monitor for stimulation-induced after-discharges. During this 

procedure patients perform various tasks testing for motor, sensory, and basic language functions 

(counting, reading, and picture naming) while bipolar electrical stimulation (60 Hz) is applied for two 

second intervals to their exposed cortical surface using a manual handheld probe at a tailored intensity 

(typically ~3-4 mA). Epileptic after-discharges are monitored during the procedure using 

electrocorticography. Positive sites (i.e., sites where stimulation causes a disruption of the tested 

function) are marked using small tickets intraoperatively. Clinical intraoperative language tasks included 

counting, picture naming (line-drawings from Snodgrass & Vanderwart, 1980), and reading. These tasks 

were used both during cortical stimulation mapping (before resection) to identify cortical sites critical 

for receptive and expressive language, and during subcortical resection to identify white matter 

pathways involved in these processes. Essential language sites were defined as those resulting in a loss 

of function in at least 2 of 3 stimulations. Every effort was made to avoid or limit the resection of these 

essential language sites while maximizing tumor removal. In addition, the patients participated in one or 

both of our experimental tasks during cortical and/or subcortical testing. After mapping, patients were 

re-sedated with either propofol or dexmedetomidine for the remainder of the procedure. Resection was 

performed with an ultrasonic aspirator guided by intraoperative neuro-navigation. 
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2.3.Tasks

We used a picture-word interference (PWI) task manipulating semantic interference and a sentence 

generation task testing the ability to form sequential dependencies as well as meaning dependencies. 

Both tasks were practiced by each patient within two days prior to surgery to enhance intra-operative 

performance.

For the PWI task, the stimuli were 20 colored photographs on a white background issued from the BOSS 

database (Brodeur, Dionne-Dostie, Montreuil, & Lepage, 2010) with distractor words superimposed. The 

pictures belonged to 5 different semantic categories with 4 items per category (see Supplementary 

Materials). Distractor words were the picture names from either semantically related pictures (related 

condition; e.g., picture of a banana, “pear“ superimposed), or semantically and phonologically unrelated 

pictures in the set (unrelated condition; e.g., picture of a banana, “arm” superimposed). All distractor 

words belonged to the response set; each list contained all pictures and picture names, once in each 

condition. Stimuli were presented in the center of the screen on a gray background; a white distractor 

word was centered on each picture. Trials were randomized using Mix (van Casteren & Davis, 2006) to 

create 5 different lists. Each patient only saw one list during the intraoperative testing; lists were 

counter-balanced across patients. Since the PWI task was practiced before surgery, the same stimuli 

were seen during the familiarization and the intraoperative testing but there were 40 additional items in 

the familiarization phase. The 60 pictures belonged to 10 semantic categories with 6 pictures per 

category. The pictures were also presented one additional time in the familiarization testing, as there 

was a neutral condition in which the distractor was a string of X’s. 

For the sentence generation task, the stimuli were 32 line drawings issued from a published and normed 

database (Masterson & Druks, 1998), representing easily identifiable actions (e.g., a man going down 

the stairs). Half of the pictures represented intransitive action verbs (e.g., swimming), and half 

represented transitive action verbs (e.g., lighting a candle). Because the stimuli had been normed for 

isolated verb production only, we did a control-test in which we asked 10 control participants (mean [sd] 

age: 25[5] years; 3 males) to produce complete simple sentences for 125 action pictures issued from the 

database (Masterson & Druks, 1998). As experimental items, we selected 32 pictures with minimum 

80% overlap between participants in terms of subject (e.g., for the gender choice, “she” being 

considered equivalent to “the woman”), verb stem (e.g., “shaved” and “is shaving” being considered 
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equivalent), and object choices for transitive verbs. The average lemma frequency (obtained from the 

SUBTL database, Brysbaert & New, 2009) tended to be higher for the verbs elicited in the sentence 

generation task (mean lemma frequency per million= 131.36, SD= 128.82) than for the nouns elicited in 

the PWI task (intraoperative list: mean [sd] lemma frequency per million = 73.99 [114.93], t(43.95)=-

1.671, p=.102; familiarization list: mean[sd] lemma frequency per million = 59.54 [ 106.21], 

t(53.83)=2.702, p=.009). Stimuli were presented at the center of the screen on a gray background. The 

trials were pseudo-randomized using Mix (van Casteren & Davis, 2006) such that no more than 2 

transitive or intransitive action-representing picture were presented in a row. Ten different lists were 

created, counter-balanced across participants and used for both the familiarization and intraoperative 

testing (different lists were used within-participant).

2.4.Procedure 

Stimulus presentation was controlled by Psyscope (Cohen, MacWhinney, Flatt, & Provost, 1993) during 

intraoperative testing, and by E-Prime 2.0 Professional software (Psychology Software Tools, Inc., 

Pittsburgh,PA) during familiarization testing. Vocal responses were recorded through a high-definition 

microphone (Zoom H2n, ZOOM North America, Hauppauge, NY; sampling rate: 48 kHz) placed close to 

the stimulus presentation computer during the intraoperative procedure, and directly through E-Prime 

(sampling rate: 22,050 Hz) during the familiarization testing. During intraoperative testing, a wireless 

microphone placed close to the patient’s mouth on the bed amplified their voice to ensure 

communication with the neurosurgeon, enhancing the clarity of sound recording. During intraoperative 

testing, trials were as follows: a blank screen was presented for 6000 msec. The sound of a slide 

projector changing (1.5 sec. duration) announced the upcoming stimulus (volume was optimized for 

each patient). Then the stimulus was presented for a duration of at least 4000 msec (stimulation 

duration could be lengthened depending on the patient). Stimuli were presented sideways on a 

computer screen oriented toward the patient at a comfortable viewing distance. The patient laid 

sideways on the operating room bed with his/her head oriented with the surgical exposure facing 

upward the neurosurgeon. The neuropsychologist, present during the entire language testing session, 

ensured that the patient could clearly see the stimuli before the experiment started. 
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During the familiarization testing in the PWI task, trials were as follows: there was a variable inter-trial 

interval which lasted between 1.7 and 2.1 sec. during which a centrally positioned crosshair (fixation 

cross) was presented. Then, the stimulus was presented for 2 seconds. 

During familiarization testing in the sentence generation task, trials were as follows: a centrally 

positioned crosshair was presented for 900 msec., followed by the stimulus for 3000 msec., followed by 

a white screen for 3000 msec. Then, the next trial began automatically. The patient was comfortably 

seated in a private room and the stimuli were presented on a computer screen at a comfortable viewing 

distance in front of the patient.

In the PWI task, the instructions were to name the picture while ignoring the distractor words. In the 

sentence generation task, the instructions were to produce a simple but complete sentence describing 

the picture. For example, when seeing a picture of a man sleeping, the patient could say “the man is 

sleeping” or “a man is sleeping”. The experimenter emphasized speed and accuracy for both tasks.

2.5.Neuroimaging, lesion mapping, and diffusion processing.

All patients underwent Magnetic Resonance Imaging (MRI) on a 3T General Electric Medical Systems 

scanner (Discovery MR750) within the week preceding surgery. Datasets acquired included: a High 

Angular Resolution Diffusion Imaging (HARDI) sequence (TR/TE =6425/80 ms, 50 axial slices, 2.2 mm in-

plane resolution (interpolated to 1.1 mm), 2mm slice thickness, b-value 2000 s/mm2, 55 diffusion 

gradients, 1 minimally diffusion weighted “B0” image), and T1, T2 and FLAIR sequences.

Lesion (i.e., tumor site) masks were manually delineated slice-by-slice using MRIcron (http:// 

www.mccauslandcenter.sc.edu/mricro/mricron/) by a trained research assistant (S.G.) directed by  a 

neurologist (R.T.K.) using input from T1, T2, and FLAIR images after normalization to MNI space 

(Montreal Neurological Institute).

HARDI datasets were corrected for motion and eddy current distortion using the FMRIB Software Library 

(FSL) (Jenkinson, Beckmann, Behrens, Woolrich, & Smith, 2012) and the gradient table rotated (Leemans 

& Jones, 2009). A tensor model was then fit to the preprocessed data using the open-source package 

Diffusion Imaging in Python (Dipy) (Garyfallidis et al., 2014) to generate diffusion metrics. All non-brain 

tissue was removed from diffusion-derived images using a brain mask generated from skull-stripping the 

B0 image (Smith, 2002).  A diffeomorphic registration was performed between either the B0 image or 

http://www.mccauslandcenter.sc.edu/mricro/mricron/
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the fractional anisotropy (FA) image and the MRI contrast on which the lesion reconstruction volume 

was drawn (FA for T1 images and B0 for T2 or FLAIR) using the Symmetric Diffeomorphic Registration in 

3D (B. B. Avants, Epstein, Grossman, & Gee, 2008; Brian B. Avants, Tustison, & Song, 2009), 

implemented in Dipy (Garyfallidis et al., 2014). The lesion reconstruction volume was moved to diffusion 

space using the resulting transformation.

Whole-brain residual bootstrap probabilistic q-ball tractography (Berman et al., 2008) was performed by 

seeding all of the voxels with fractional anisotropy greater than 0.15 at a density of 1 seed per voxel 

with the tracking parameters described in (Caverzasi et al., 2016).  The lesion reconstruction volume was 

targeted and outlier streamlines removed by setting a Cluster Confidence Index (default parameters: 

theta=5, k=1) threshold (Jordan, Amirbekian, Keshavan, & Henry, 2018) subjectively using the Trackvis 

viewer (Wang, Van Wedeen). Any streamlines less than 40mm in length were excluded. Streamline 

datasets were converted to binary masks, transformed back to MNI space using the reverse 

diffeomorphic registration, and spatially summed to create density maps of lesion connectivity for the 

groups of interest (Figure 5, see supplementary materials for lesion connectivity for the whole patient 

group, Figure S2). 

2.6.Analysis

Analysis were performed on response accuracy rates. Errors were determined using the vocal recordings 

and included paraphasias (semantic, phonological, remote, or neologistic), grammatical errors, 

hesitations, or no responses (including when the patient said he/she did not know the answer). We also 

distinguished verb vs. non-verb errors. Verb errors included the production of a wrong verb, 

phonological errors in the verb production, omission of the auxiliary verb, or failures to retrieve the verb 

(hesitations were excluded from this analysis of verb errors because it was often unclear what part of 

the sentence caused the hesitation). We could not analyze the effect of the parameters of interest (Task 

and Stream) on the different types of errors that were made because of the low number of 

observations, but report the overall distribution of error types per Task and per Stream in the 

supplementary materials.

Cortical stimulation sites were labelled by a neurosurgeon (M.B.) and classified as being on the dorsal or 

ventral stream following reviews and studies in the field (Hickok & Poeppel, 2007; Saur et al., 2008; see 

Table 2). Error-rates per task per region are also presented in the supplementary materials (Table S4).  
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For subcortical testing, the ventral/dorsal distinction was made based on tumor location as the patient 

was being tested during tumor resection. Tumor sites dorsal to the Sylvian fissure were classified as 

dorsal and tumor sites ventral to the Sylvian fissure were classified as ventral (Fig. 2).  

Table 2: Classification of cortical stimulation sites along the dorsal or ventral language processing 

streams

Dorsal regions Ventral regions

 Posterior superior temporal gyrus (pSTG)

 All parietal regions

 Inferior frontal gyrus pars opercularis 

(IFGop)

 Middle frontal gyrus (MFG)

 Primary motor cortex (M1)

 Middle superior temporal gyrus (mSTG) 

 Anterior superior temporal gyrus (aSTG)

 Middle temporal gyrus (MTG)

 Inferior temporal gyrus (ITG)

 Inferior frontal gyrus pars orbitalis 

(IFGorb)

 Inferior frontal gyrus pars triangularis 

(IFGtri)

Statistical analysis was performed with R version 3.3.2 (R Core Team, 2016), using packages “lme4” for 

the mixed effect models (Bates, Mächler, Bolker, & Walker, 2014) and “car” to compute analysis of 

deviance tables for the fixed effects of the mixed effect models (Fox & Weisberg, 2011). We analyzed 

accuracy rates using logistic mixed effect models (Baayen, Davidson, & Bates, 2008; Jaeger, 2008). 

Mixed effect models rely on single-trial data rather than on averages over participants or items, and are 

also free from the assumptions of homogenous variance and sphericity that are inherent to the more 

classic ANOVA (Pinheiro & Bates, 2000). One major advantage for the current study is that these models 

allow for varying number of trials per condition for each participant and item and do not require for 

each participant or item to have values in each condition. We controlled for random effects of patient 

(including a random slope for Task) and items.  We could not control for a random effect of items nor 

add by-patient random slopes for the effects of interest due to time constraints in the intraoperative 

testing leading insufficient statistical power. Thus, we report individual patient data in Figures 3 and 4. 

In addition, we tested for an effect of the experimental manipulations in each task (i.e., relation 

between picture name and distractor in the PWI task and transitivity of the verb in the sentence 

generation task, hereafter referred to as “Condition”) on accuracy rates for the preoperative data. We 
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performed one logistic mixed effect model in each task testing for a fixed effect of Condition and 

controlled for random effects of patient (including a random slope for Condition when possible3) and 

items. During intraoperative testing, we did not have sufficient statistical power to analyze the effect of 

Condition within task and collapsed across conditions for analysis. 

Finally, we could not separate trials during which electrical stimulation occurred from those during 

which only ultrasonic resection was performed during subcortical resection. Electrical stimulation was 

performed on only 20% of the 225 trials available for analysis overall, with some patients having zero 

electrical stimulation trials, so we collapsed electrical stimulation and resection trials for the subcortical 

analysis. We nevertheless report descriptive results including only the trials during which electrical 

stimulation was performed subcortically in the supplementary materials (section 3). These results show 

the same pattern of effects for each patient as reported below when collapsing the stimulation and 

resection trials. Electric stimulation is the gold standard procedure to briefly disrupt neuronal activity in 

a circumscribed brain area without altering the tissue, and is used prior to resection cortically, or before 

continuing resection in particular directions subcortically (for example, when approaching key white 

matter pathways such as the cortico-spinal motor tract delineated through preoperative diffusion 

imaging). However, as reported by Sierpowska et al. (2017), the ultrasonic generator used for the 

resection has been shown to cause effects in adjacent tissue similar to the stimulation induced by the 

Ojemann cortical electrical stimulator, used here (Carrabba et al., 2008). Even though the ultrasonic 

generator also transiently disrupts brain tissue and is typically not used as a clinical tool to test brain 

function, its causal disrupting effect is similar to the standard electric stimulation used in the current 

study. This permitted us to collapse both types of trials. We therefore refer to these results as the 

subcortical disruption results, and not to the subcortical stimulation results.

We compared accuracy rates between testing times: familiarization testing, intraoperative cortical 

testing, and intraoperative subcortical testing. P-values were obtained using type-III (because of the 

presence of an interaction) analyses of deviance tables providing Wald chi-square tests for the fixed 

effects. For all models, we report Wald chi-square values and associated p-values as well as raw beta 

estimates, 95% confidence intervals around these estimates, standard errors, Wald Z, and associated p-

values.

3 There was an insufficient number of data points in one patient in the PWI during preoperative testing as this 
patient only performed 40 trials instead of 180 as the other patients, and was exposed to 2 out of the 3 conditions 
(related and unrelated, but not to the X string).



15

3. Results

3.1.Preoperative results

The median error rates per task were low during preoperative testing (PWI: 5.00% median error rate, 

inter-quartile interval, IQI = [2.78%-10.56%]; Sentence Generation: 6.25% median error rate, IQI = 

[3.13%-15.63%]) and no significant effects were found. 

There was no effect of Task on accuracy rates (Wald χ2 (1) = 0.25, p=.615): patients did not make more 

errors in one task versus the other. There was also no effect of Stream (Wald χ2 (1) = 0.11, p=.720): 

patients did not make more errors if their tumor was located above versus below the Sylvian fissure. 

Finally, there was no interaction between Task and Stream (Wald χ2 (1) = 0.12, p=.728).

Within-task analyses did not reveal any effect of Condition. There was no effect of verb transitivity in the 

sentence generation task (Wald χ2 (1) = 1.77, p=.183), and no effect of picture-distractor relatedness4 in 

the PWI task (Wald χ2 (1) = 1.46, p=.227). We report the median error rates per condition in the PWI task 

and per Stream in the supplementary materials (Table S5).

3.2.Intraoperative results

There was an effect of Testing Time on accuracy rates (Wald χ2 (2) = 97.18, p<.001). Accuracy rates were 

higher during preoperative testing than during cortical testing (βraw = 0.672, CI = [0.432 0.912], SD = 

0.123, Wald Z=5.490, P<.001), and lower during subcortical testing compared to cortical testing (βraw = -

1.092, CI = [-1.511 -0.673], SD = 0.214, Wald Z=-5.110, P<.001). Thus, participants made more errors 

during subcortical testing than during cortical testing and during the awake language mapping 

procedure overall compared to the preoperative testing. 

3.2.1. Cortical testing

During cortical stimulation, there was no effect of Task (Wald χ2 (1) = 0.168, p=.682), a main effect of 

Stream (Wald χ2 (1) = 3.84, p=.050, with more errors during ventral than dorsal stream stimulations), 

and a significant interaction between Task and Stream on accuracy rates (Wald χ2 (1) = 6.52, p=.011, see 

4 We excluded the neutral condition from this analysis because one patient (Pt10) practiced with the 
intraoperative version of the PWI task, which did not contain this third condition. Here the conditions compared 
are “related” vs. “unrelated”.
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Fig. 3 for by-patient results). When we examined for an effect of Task on accuracy rates within dorsal 

and ventral stream stimulation, we found no effect of Task during dorsal stream stimulation (Wald χ2 (1) 

= 0.18, pc>1, Bonferroni-corrected p-value5 for multiple comparisons), but found a significant effect of 

Task during ventral stream stimulation (Wald χ2 (1) = 9.37, pc=.004, Bonferroni-corrected p-value), 

where the patients were less accurate in the Sentence Generation task versus the PWI task during 

ventral stream stimulation (βraw = -1.191, CI = [-1.953 -0.428], SD = 0.389, Wald Z=-3.06, P=.002, see 

Table 3 and Fig. 3). We note however that the error rates were very low in the PWI task during cortical 

stimulation of brain regions along the dorsal and ventral streams (dorsal stream median error rate: 0%, 

IQI= [0%-16.67%]; ventral stream median error rate: 0%, IQI= [0%-18.25%]). The distribution of the error 

types per Task and per Stream as well as the median error rates per stimulated brain region are 

presented in the supplementary materials (Tables S1 and S4).

Table 3: Median error rate and inter-quartile (1st-3rd) interval (IQI) per Task and Stream for testing 

performed during cortical stimulation.

Dorsal stream

cortical regions

Ventral stream 

cortical regions

Median

Sentence Generation 5.88%

IQI= [0%-16.67%]

9.09%

IQI= [0%-25.00%]

6.27%

IQI= [0%-19.17%]

Picture-word Interference 0%

IQI= [0%-19.17%]

0%

IQI= [0%-6.00%]

0%

IQI= [0%-8.10%]

Median 0%

IQI= [0%-16.67%]

0%

IQI= [0%-18.25%]

3.2.2. Subcortical testing

During subcortical testing, there was a main effect of Task on accuracy rates (Wald χ2 (1) = 7.410, 

p=0.006): the sentence generation task elicited more errors than the PWI task (see Fig. 4). There was 

also a marginal effect of Stream (Wald χ2 (1) = 2.763, p=0.096): performance tended to be lower in the 

territory of ventral stream pathways compared to dorsal stream pathways (βraw = -1.870, CI = [-4.075 

5 P-values were multiplied by 2 for the by-Stream comparisons.
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0.335], SD = 1.125, Wald Z=-1.662, P=.097). Critically, there was an interaction between Task and Stream 

(Wald χ2 (1) = 8.624, p=.003, βraw = 2.835, CI = [0.943 4.727], SD = 0.965, Wald Z=2.937, P=.003): There 

were more errors in the sentence generation task than in the PWI task in the territory of dorsal stream 

pathways (i.e., for tumors located above the Sylvian fissure). The opposite pattern was observed in the 

territory of ventral stream pathways (see Fig 4 and Table 4). When we examined for an effect of Task on 

accuracy rates within dorsal and ventral stream, we found an effect of Task in the dorsal stream (Wald 

χ2 (1) = 7.47, pc=.012, Bonferroni-corrected p-value), but found no significant effect of Task in the 

ventral stream (Wald χ2 (1) = 1.42, pc=.468, Bonferroni-corrected p-value). The distribution of the error 

types per Task and per Stream are presented in the supplementary materials.

Table 4: Median error rates and inter-quartile ranges per Task and Stream for testing performed during 

subcortical resection.

Dorsal pathways territory Ventral pathways territory Overall Median

Sentence 

Generation

40%

IQI= [27.27%-40.00%]

14.81%

IQI= [0.00%-34.72%]

29.63%

IQI= [6.45%-40.00%]

Picture-word 

Interference

0%

IQI= [0.00%-3.57%]

20.00%

IQI= [16.67%-40.00%]

11.90%

IQI= [0.00%-25.00%]

Overall Median 17.21%

IQI= [4.84%-40.00%]

20.00%

IQI= [0.00%-40.00%]

3.3.Diffusion imaging data in relation to behavioral data

The patients with both PWI and Sentence Generation subcortical testing (N=7) were split into a group 

that had a higher error rate in PWI than Sentence Generation (N=4) and a group that had a higher error 

rate in Sentence Generation than PWI (N=3) to evaluate differences between the tumor connectivity 

patterns of the groups. Importantly, for this analysis, groups were not separated based on tumor 

location but on behavioral profiles. As can be seen on the connectivity maps (Fig. 5), the patients with 

higher error rates in Sentence Generation versus PWI had tumor locations associated with a dorsal 

stream connectivity pattern (in green), meaning the streamlines intersecting tumor locations, as 

indicated by the tumor reconstructions, corresponded to dorsal pathways. This means that the 

pathways that were potentially stimulated in patients who had higher error rates in Sentence 

Generation compared to PWI were likely dorsal. By contrast, the patients with higher error rates in PWI 
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versus Sentence Generation had tumor locations associated with a broader though more ventral stream 

connectivity pattern (in yellow). This means that the pathways that were potentially stimulated in 

patients who had higher error rates in PWI compared to Sentence Generation tended to be more 

ventral, compared to the pathways involved for the patients with the opposite pattern of results.
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Discussion

Our results provide a rare window into the causal roles of the dorsal and ventral streams in language 

production through the lens of awake language mapping using cortical stimulation and subcortical  

ultrasound resection and stimulation. Notably, all subjects were tested pre-surgically and did not show 

any task effects nor any interaction with tumor location then, thus controlling for the effect of tumor 

per se. By contrast, the behavioral patterns of patients changed intraoperatively depending on the 

cortical and subcortical areas that were being tested and the task performed. Our results support the 

claim that dorsal stream pathways are engaged in organizing elements in a sequence, and that ventral 

stream pathways are engaged in the processing of meaning dependencies.

Role of the ventral stream in language production

There were more errors during ventral stream testing than during dorsal stream testing: a main effect of 

Stream was present during cortical testing and trended to significance during subcortical testing. These 

results support a role of the ventral stream cortical and subcortical pathways in both single word 

production and in sentence generation. Dual stream models of language perception have associated the 

ventral stream with lexical-to-semantic mapping (e.g., Hickok & Poeppel, 2004, 2007; Rauschecker & 

Scott, 2009; Saur et al., 2008) or the formation of meaning dependencies independent of sequential 

order (Bornkessel-Schlesewsky et al., 2015). A stroke lesion study (Fridriksson et al., 2016) including 

multiple language production tasks argued that the ventral stream supports semantic-to-lexical mapping 

in language production, similarly to supporting lexical-to-semantic mapping in language perception. Our 

results are in agreement with this interpretation given the two language production tasks we used 

involved semantic-to-lexical mapping. We note that there are differences between dual stream 

production models as to which tract links lexical-semantic representations to speech output processes 

(Roelofs, 2014; Ueno et al., 2011). Ueno et al.’s Lichtheim 2 model proposes the ventral pathway is 

primarily involved in this function (Ueno et al., 2011) in line with the perception models described 

above. However, Roelofs’ WEAVER++/ARC model proposes a secondary dorsal pathway (D2 section of 

the Arcuate Fasciculus) connecting the left MTG to the LIFG supports the mapping of lexical-semantic 

representations (in the left MTG) onto speech output processes (in the LIFG) (Roelofs, 2014). Our results 

align better with the predictions of the Lichtheim 2 model, as a crucial role of the dorsal stream 

(reflected by higher error rates overall in the dorsal than ventral stream) should have been observed in 
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both tasks based on the WEAVER++/ARC’s predictions. We note however that these models converge in 

the idea that the anterior temporal lobe plays an important role in conceptual processing, suggesting 

that part of the ventral pathway (linking the posterior temporal cortex to the ATL) is critical for lexical-

to-semantic mapping across models. 

There were some differences observed between tasks that varied depending on the site of testing 

(cortical vs. subcortical). During ventral stream cortical stimulation, we observed more errors during 

sentence generation than during PWI, although error rates were very low overall during cortical testing 

in the PWI. This result may support a role of the ventral stream in semantic-to-lexical mapping, as there 

were more words to be retrieved overall in sentence generation than PWI. This result could also be 

taken as an argument in favor of a role of the ventral stream in syntactic processing, needed in sentence 

generation but not in single word production. A category of models have argued for a role of the ventral 

stream in supporting this function (Fridriksson et al., 2016; Hickok & Poeppel, 2004; Saur et al., 2008), 

and particularly for simple sentences as used here (Friederici et al., 2006, 2012). However, if this were 

true, similar results should have been observed at the subcortical level. This was not the case in our 

study as there was no significant effect of Task during subcortical testing in the ventral stream. In 

addition, all patients with tumors located below the Sylvian fissure made more errors in the PWI than in 

the sentence generation task. Moreover, converging evidence is brought by the diffusion imaging 

analyses based on behavioral profiles. The patients who made more errors in the sentence generation 

task than in the PWI task had dorsal tumor connectivity profiles, while the patients who made more 

errors in the PWI task than in the sentence generation task showed more diffuse but overall more 

ventral tumor connectivity. This pattern of results is not in agreement with the theory postulating a role 

of the ventral stream in syntactic processing for language production and instead supports a role for the 

dorsal stream in supporting this function (see also supplementary materials for the distribution of 

grammatical errors in the ventral versus the dorsal stream). 

Concerning the subcortical testing results and connectivity maps, we argue that the reason why patients 

who made more errors in the PWI vs. sentence generation tasks had more ventral connectivity patterns 

(Figure 5) is due to the presence of the semantic interference manipulation and the necessity to ignore 

the distractor word in the PWI task. In our study, we did not find an interference effect on error rates, 

but the PWI task demanded more semantic interference resolution and controlled retrieval than the 

sentence generation task, in which no such manipulations were present. Previous studies suggest that 

semantic interference resolution in language production and controlled retrieval and selection of 
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semantic knowledge during word comprehension are supported by ventral stream pathways (Harvey & 

Schnur, 2015; Harvey, Wei, Ellmore, Hamilton, & Schnur, 2013). In particular, the inferior frontal 

occipital fasciculus has been associated with semantic interference resolution in language production 

(Harvey & Schnur, 2015), and the uncinate fasciculus has been associated with controlled retrieval and 

selection of semantic knowledge during word comprehension (Harvey et al., 2013). This is also in line 

with Roelofs’ WEAVER++/ARC model (Roelofs, 2014) according to which the ventral pathway is involved 

in top-down control aspects of language production. Here, we did not identify the specific pathways 

supporting these processes but our results are in agreement with the proposal that ventral white matter 

pathways are recruited by tasks necessitating controlled retrieval and resolution of semantic 

interference in language production. 

Role of the dorsal stream in language production

Differences between tasks in the dorsal stream only emerged during subcortical testing. There were 

more errors in the sentence generation task than in the PWI task during subcortical testing and no 

significant difference between tasks during cortical stimulation for dorsal stream testing (although error 

rates trended to be lower in PWI than in Sentence Generation there too). In addition, the connectivity 

maps of the patients who made more errors in the sentence generation task than in the PWI task during 

subcortical testing were more dorsal.

The sentence generation task involves the production of verbs, whereas the PWI task only involves the 

production of nouns. A posterior-frontal and parietal versus temporal dissociation has been proposed to 

underlie verb versus noun processing, respectively (for a review, see Cappa & Perani, 2003). Thus, verb 

processing has been proposed to involve more dorsal areas than noun processing. Awake language 

mapping studies have reported that different cortical sites may be involved in verb and noun processing 

(Lubrano, Filleron, Démonet, & Roux, 2014), although not necessarily dissociated along dorsal and 

ventral streams (Corina et al., 2005). We note that several studies have failed to find anatomical 

differences between verb and noun processing and report a high degree of overlap between the 

associated brain activations (for reviews, see Crepaldi et al., 2013; Crepaldi, Berlingeri, Paulesu, & 

Luzzatti, 2011). 

Hickok (2012) has proposed that the dorsal stream supports sensory-motor feedback and articulatory 

control in language production. This model proposes that the increased phonemic paraphasias in 
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patients with conduction aphasia is caused by an impaired integration of somatosensory feedback with 

phonemic planning as a consequence of dorsal stream damage. In our study, the sentence generation 

task required the production of more words than the PWI task, which required only single word 

production. Thus, the increased production load may have resulted in an increased recruitment of dorsal 

pathways in sentence generation, compared to single word production. In support with this proposal, 

awake language mapping studies have argued for a role of the dorsal stream in phonological encoding 

(for a review see Duffau, Moritz-Gasser, & Mandonnet, 2014).

The question in our study is whether the dorsal stream may also support the ordering of words in a 

sequence, as suggested in language perception by (Bornkessel-Schlesewsky et al., 2015). Indeed, the 

sentence generation task differs from the PWI task in that the sentence generation task requires the 

subject to order words in a syntactically correct sequence. Syntactic processing is one of the main 

aspects differentiating dual stream models of language processing (although not addressed in dual-

stream language production models, Roelofs, 2014; Ueno et al., 2011). While a category of models argue 

for a role of the ventral stream in syntactic processing (Fridriksson et al., 2016; Hickok & Poeppel, 2004; 

Saur et al., 2008), others argue for a role of the dorsal stream in this function (Bornkessel-Schlesewsky 

et al., 2015; Wilson et al., 2011). Previous awake language mapping studies addressing syntactic 

processing are scarce and rarely assessed syntax in the context of language production (for a review see 

Zanin et al., 2017). However, Leclercq et al. (2010) have shown that the stimulation of the arcuate 

fasciculus (a dorsal stream pathway) causes syntactic deficits in addition to articulatory deficits, whereas 

stimulation of the inferior frontal occipital fasciculus (a ventral stream pathway) induces semantic 

paraphasias. Syntactic errors were also observed following stimulation of other dorsal stream regions: 

the superior longitudinal fasciculus (Maldonado, Moritz-Gasser, & Duffau, 2011) and the left inferior 

parietal lobule (Maldonado, Moritz-Gasser, de Champfleur, et al., 2011). These studies argue for a role 

of the dorsal stream in syntactic processing in addition to phonological encoding.

A closer look at the types of errors in our study agree with this interpretation as grammatical errors 

were more frequent during dorsal stream testing (cortical: 18%; subcortical: 22%) than during ventral 

stream testing (cortical: 11%; subcortical: 6%) both during cortical stimulation and subcortical resection 

(see supplementary materials6). Therefore, our results support dual stream models arguing for a role of 

6 We also note that the distributions of phonemic paraphasias or verb versus non-verb errors do not support the 
other two possible interpretations as strongly, as there were opposite patterns of results at the cortical and 
subcortical levels for these errors.
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the dorsal stream in syntactic processing (Bornkessel-Schlesewsky et al., 2015) and extend these models 

to language production.

Differences between cortical and subcortical testing

The division between dorsal and ventral stream function was clearer during subcortical than during 

cortical testing. Indeed, the Task by Stream interaction during subcortical testing was evident on a 

patient-by-patient basis: all patients showed more errors the dorsal in the sentence generation task 

than in the PWI task during dorsal stream testing, and the opposite was true during ventral stream 

testing. More variable patterns of results were observed at the cortical level. Higher degrees of plasticity 

have been reported at the cortical level compared to the subcortical level in patients with brain tumors. 

Indeed, the inter-patient variability has been shown to be high during cortical stimulation in a number of 

neurosurgical studies (e.g., Corina et al., 2005; Duffau, 2014; Duffau, 2014; Ojemann, 1979; Ojemann, 

Ojemann, Lettich, & Berger, 1989; Ojemann, Ojemann, Lettich, & Berger, 2008; Penfield & Roberts, 

1959; Sanai, Mirzadeh, & Berger, 2008). At the subcortical level, however, persistent language deficits 

can be observed depending on the white matter pathway damaged (Caverzasi et al., 2016; Duffau, 2015; 

Duffau et al., 2002). In addition, preserving white matter pathways in the vicinity of the lesion has been 

associated with better language outcomes (Caverzasi et al., 2016; Duffau, Gatignol, Mandonnet, Capelle, 

& Taillandier, 2008). These studies suggest a greater degree of plasticity at the cortical level compared 

to the subcortical level, which could explain why our results were generally clearer during subcortical 

resection than during cortical testing. Indeed, the slow growing tumors (most patients in our study had 

grade 2 tumors) are likely to have caused substantial reorganization of function at the cortical level. We 

note that similar observations have been made in studies investigating the neurobiology of language 

through stroke-induced aphasia and lesion-symptom mapping (e.g., Dronkers, Plaisant, Iba-Zizen, & 

Cabanis, 2007; Gaizo et al., 2017; Griffis, Nenert, Allendorfer, & Szaflarski, 2017). These authors report 

more severe and longer lasting impairment after disruption of major white matter pathways linking the 

left temporal lobe to the left frontal lobe compared to isolated cortical damage only (Dronkers et al., 

2007; Thiebaut de Schotten et al., 2015). Interestingly, neurosurgical investigations of language have led 

to the proposal of a hodotopical map of language processing in which the neurobiological basis of 

language is organized in parallel segregated large-scale cortico-subcortical subnetworks underlying 

different aspects of language processing, and where white matter pathways play a central role in the 

neurobiology of language (Duffau, Moritz-Gasser, & Mandonnet, 2014). In particular, this model 
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associates dorsal stream pathways (in particular the arcuate fasciculus) with phonological encoding, and 

ventral stream pathways (in particular the inferior frontal occipital fasciculus) with semantic processing. 

Our results agree with this distinction and additionally suggest dorsal stream pathways support syntactic 

encoding during sentence generation. Importantly, our study also points to a major and causal role of 

white matter pathways in language and highlights the need to include these pathways as playing central 

roles in neurobiological language models.

Limitations of the present study

One caveat concerning the spatial resolution is worth mentioning. Because of our focus on dissociating 

the roles of ventral versus dorsal language pathways and due to sparse and spatially-biased spatial 

sampling inherent to awake language mapping, we collapsed across broad cortical structures for 

statistical analysis. Therefore, we are unable to make more specific claims regarding the spatial 

localization of our effects. In addition, only a subset of participants were tested during subcortical 

resection and stimulation (n=10), and a subset of those performed both tasks during subcortical testing 

(n=7). Therefore, our results should be considered as initial steps towards dissociating the roles of the 

dorsal and ventral streams in language production using the unique approach of awake cortical and 

subcortical stimulation. 

In conclusion, the rare opportunity provided by the assessment of different aspects of language 

production during awake cortical and subcortical language mapping in patients undergoing tumor 

resection sheds new light on the organization of language production along ventral and dorsal 

processing streams. Our results indicate that the ventral and dorsal stream play dissociable roles in 

language production as in language perception. In particular, in agreement with dual stream language 

models (Bornkessel-Schlesewsky et al., 2015), our results support that dorsal stream pathways are 

critical for organizing elements in a sequence, particularly important in the generation of sentences, and 

that ventral stream pathways are critical for the processing of meaning dependencies, probed here 

through both the sentence generation task and the picture-word interference task.
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Figure captions:

Figure 1: Overlay of tumor sites in standard MNI space of the 17 left hemisphere patients after 

reconstruction. The color coding indicates the amount of overlap between the different patients' lesions 

(from light blue for the highest overlap and dark blue for the lowest overlap). L = left, R = right. 

Figure 2: Overlay of tumor sites in standard MNI space of the 10 patients who underwent testing during 

subcortical resection by group (top: overlay for the 5 patients with tumors above the Sylvian fissure; 

bottom: overlay for the 5 patients with tumors below the Sylvian fissure). The color coding indicates the 

amount of overlap between the different patients' lesions (from light blue for the highest overlap and 

dark blue for the lowest overlap). L = left. 

Figure 3: Behavioral results during cortical stimulation per patient, task, and stream (top: dorsal stream; 

bottom: ventral stream). 

Figure 4: Behavioral results during subcortical stimulation per patient, task, and stream (top: dorsal 

stream; bottom: ventral stream). The results for patients who were only tested in one experiment are 

represented by dots (Pt1, Pt15, Pt6).

Figure 5: Connectivity maps in MNI space associated with tumor locations for the 3 patients with higher 

error rates in Sentence Generation than in PWI during subcortical testing (top), and for the 4 patients 

with higher error rates in PWI than Sentence Generation during subcortical testing (bottom). The tumor 

reconstruction volume was targeted from a whole-brain streamline dataset; voxels connected to the 

tumor volume were mapped here as described in 2.5. Lighter colors indicate higher overlap between 

patients.



38

Figure S1: Overlay of tumor sites in standard MNI space of the 2 right-hemisphere patients after 

reconstruction. The color coding indicates the amount of overlap between the different patients' lesions 

(from light blue for the highest overlap and dark blue for the lowest overlap). L = left, R = right. 

Figure S2: Connectivity map associated with tumor locations for the 19 patients in MNI space. The 

tumor reconstruction volume was targeted from a whole-brain streamline dataset; voxels connected to 

the tumor volume were mapped here as described in 2.5. Lighter colors indicate higher overlap between 

patients.

















Significance Statement

We report rare data acquired in 17 left hemisphere patients undergoing cortical and 
subcortical stimulation during neurosurgical awake language mapping. Our results 
shed new light on the causal roles of ventral and dorsal pathways and indicate that 
they play dissociable roles in language production as in language perception.
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Supplementary materials

1. Right hemisphere patients

Two patients had surgery in the right hemisphere (Figure S1). One did not participate in any 

intracranial language testing (Pt14), and the other one (Pt3) only had cortical testing (no testing during 

subcortical resection). Pt3 omitted auxiliary verbs more than 90% of the time despite being reminded of 

the instruction to produce full sentences in the sentence generation task during cortical testing.

2. Error-type descriptive analyses by testing site

2.1. Cortical testing results

We could not analyze statistically the effect of Task and Stream on the different types of errors that 

were made because of the low number of observations we had for each but report the overall 

distribution of the error types per Task and per Stream in Table S1. Descriptively, hesitations were 

generally the most common type of error across Task and Stream and were overall less common during 

dorsal than ventral stream testing. Phonemic paraphasias were present only during dorsal stream 

testing. Semantic paraphasias were present during both dorsal and ventral stream testing and appeared 

more frequently during dorsal than ventral stream testing for both tasks. Remote and neologistic 

paraphasias (i.e., when the patient produced a word unrelated to the present context or a non-word 

that could not be related phonemically to the target) were present only in the sentence generation task 

during ventral stream stimulation. No-responses were present across Task and Stream and appeared to 

be more common during dorsal than ventral stream testing. Finally, grammatical paraphasias were 

present only in the sentence generation task and were more common during dorsal than ventral stream 

testing.

In the sentence generation task, 100% of non-hesitation errors were made on the verb (rather than 

on the subject or object) during dorsal stream testing, and 58% during ventral stream testing.

Table S1: Overall percentages of error types per Stream and per Task during cortical stimulation

Dorsal stream testing

Phonemic Semantic1 Remote Neologistic No 

response

Grammatical Hesitation

1 Semantic errors in PWI were either the distractor word in the related condition or another semantically-related 
word.
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PWI 5% 32% 0% 0% 26 % 0% 37%

Sentence 

Generation

9% 18% 0% 0% 27% 18% 27%

Ventral stream testing

PWI 0% 27% 0% 0% 18% 0% 55%

Sentence 

Generation

0% 7% 11% 4% 18% 11% 50%

2.2. Subcortical testing results

Similar to the cortical stimulation results, we could not analyze the effect of Task and Stream on the 

different types of errors that were made because of the low number of observations we had for each 

but we report the overall distribution of the error types per Task and per Stream in Table 6. 

Descriptively, we observed that hesitations were the most common type of error overall (and the only 

type of error for PWI during dorsal stream testing), except for the sentence generation task during 

ventral stream testing. Phonemic paraphasias were present during both dorsal and ventral stream 

testing in similar proportion for the sentence generation task, and during ventral stream testing in the 

PWI task. Semantic paraphasias were the most common type of error (after hesitations) for the PWI task 

during ventral stream testing and were absent from dorsal stream testing in this task. In sentence 

generation, semantic paraphasias were present during both dorsal and ventral stream testing. Remote 

and neologistic paraphasias were present only in sentence generation and only during ventral stream 

testing. No-responses were present across Task and Stream (except for PWI during dorsal stream 

testing). Finally, grammatical paraphasias were present only in the sentence generation task and were 

more common during dorsal than ventral stream testing.

In the sentence generation task 56% of non-hesitation errors were made on the verb during dorsal 

stream testing, and 69% during ventral stream testing.

Table S2: Overall percentages of error types per Stream and per Task during subcortical testing

Dorsal stream testing

Phonemic Semantic Remote Neologistic No 

response

Grammatical Hesitation

PWI 0% 0% 0% 0% 0 % 0% 100%
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Sentence 

Generation

6% 17% 0% 0% 6% 22% 50%

Ventral stream testing

PWI 7% 21% 14% 0% 14% 0% 43%

Sentence 

Generation

6% 11% 56% 11% 6% 6% 0%

3. Subcortical stimulation results

As reported in the main text, electrical stimulation using the Ojemann stimulator was performed on 
only 20% of the 225 subcortical testing trials. We therefore could not perform statistical analyses of the 
subcortical stimulation trials separately. However, we report the number of errors made per Task and 
per Stream per patient and overall in Table S3. As visible here, all patients showed the same direction of 
effect as reported in the main text when stimulation and resection trials were collapsed. Specifically, 
patients who performed both the Sentence Generation and the PWI task during dorsal stream 
stimulation (n=2) made more errors in the Sentence Generation task compared to the PWI task. By 
contrast, patients who performed both the Sentence Generation and the PWI task during ventral stream 
stimulation (n=3) made more errors in the PWI task compared to the Sentence Generation task.

Table S3: Percentages of errors (and total number of trials in parenthesis) per Stream and per Task 
during subcortical stimulation per patient and overall.

Patient Stream Sentence 
Generation

PWI

P2 Dorsal 100% (1) 0% (1)
P8 Dorsal 25% (4) 0% (1)

P10 Ventral 0% (4) 20% (10)
P17 Ventral 60% (5) 100% (4)
P5 Ventral 0% (7) 25% (4)

P11 Ventral 0% (2)
P9 Ventral 7% (14)

Overall averages Sentence 
Generation

PWI

Dorsal 62.5% 0%
Ventral 16.75% 36.25%

4. Cortical testing results per stimulated region

We here report the median error-rates per task and per stimulated region along the dorsal and 
ventral streams as defined in the main text (table 2).
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Table S4: Median error rates and inter-quartile (1st-3rd) interval (IQI) per Task and brain region for 
testing performed during cortical stimulation.

Task

Stimulation location PWI Sentence Generation

Dorsal stream 
regions STGPost 0 [0-25] 5.56 [0-17.78]

Parietal 6.67 [3.33-10] 18.33 [17.5-19.17]

M1 0 [0-0] 0 [0-0]

IFGop 0 [0-13.57] 0 [0-8.33]

MFG 0 [0-12.5] 0 [0-3.57]

Ventral stream 
regions STGAnt 0 [0-0] 5.56 [0-37.5]

STGMid 0 [0-0] 18.75 [9.38-28.13]

MTG 0 [0-0] 0 [0-17.31]

ITG 7.69 [3.84-7.69] 0 [0-17.86]

OFC 0 [0-0] 0 [0-0]

IFGorb 0 [0-0] 100 [100-100]

IFGtri 0 [0-3.57]
7.14 0-

29.46]

5. PWI results per condition

We here report the median error-rates per Stream and per condition (unrelated vs. related picture-

word pair) in the PWI task.

Table S5: Median error rates and inter-quartile (1st-3rd) interval (IQI) per Stream and Condition 
(unrelated vs. related) in the PWI task for testing performed preoperatively, during cortical stimulation, 
and during subcortical stimulation and resection.

Stream Unrelated distractor word Related distractor word

Preoperative testing Dorsal 3.33 [2.50-15.00] 5.00 [2.50-14.17]

Ventral 5.83 [3.33-9.58] 7.50 [4.17-13.75]
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Cortical testing Dorsal 0 [0-12.50] 0 [0-10.00]

Ventral 0 [0-0] 0 [0-14.29]

Subcortical testing Dorsal 0 [0-0] 0 [0-6.67]

Ventral 30.0 [25.00-33.33] 12.5 [0-60.00]


